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Real space renormalization is a powerful and theoretically fascinating, albeit difficult technique
for investigating scale and phase behavior in physical systems. For even the simplest problems,
formulating the so-called renormalization group (RG) flow involves incredibly tedious, intuition-
dependent work that can drag on for years. However, once accurately described, RG flows have
a number of uses, from describing phase behaviors to speeding up simulations. Accordingly, any
information at all about their properties is highly valued and sought after by physicists. In this
work, we review and assess a novel approach to real space renormalization initially proposed by
Hou et al. [1]. The so-called Machine Learning Renormalization Group (MLRG) algorithm auto-
matically determines approximate RG flows of translationally-invariant Ising models, given only the
symmetry description of the lattice. It has the potential to effectively characterize a wide range
of interesting systems, and also demonstrates an elegant synthesis of both new and old machine
learning techniques with statistical physics. In the Section I, we will first give some background for
real space renormalization and the Ising model. In Section II, we will describe the MLRG algorithm
and demonstrate its use. In Section III, we will discuss the algorithmic design space and explore
modifications for improvement.

I. BACKGROUND

A. The Gist of Real Space Renormalization

Real-space renormalization is a theoretical framework
for understanding scale in physical systems [2, 3]. That
is, it tries to understand how the apparent behavior of a
system changes with the length scale.

As a toy example, consider the task of modeling some
volume of water. At the very smallest scales, we might
use field theories or quantum mechanics to describe the
microscopic dynamics composing each and every atom.
This approach requires a simply enormous amount of in-
formation—think positions, momenta, etc. In addition,
the relations between these degrees of freedom are, more
often than not, impossibly complex and intractable to
solve.

However, if we choose to ”zoom out” to a somewhat
larger scale, things become substantially simpler and
more manageable. At the human scale, for example,
fluid mechanics accurately describes the hydrodynamics
of the water. But compared to the smaller-scale the-
ories, it is much simpler model, requiring only a few
parameters—viscosity, pressures, temperatures, etc.—to
fully specify the system. Computation is also completely
tractable and comparatively straightforward.
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We ask, in what way are all these theories, which model
the same system, linked? Why are small scales complex
and large scales simple? How is this all connected to
the thermodynamic phase behavior of the system? Real
space renormalization provides answers to these ques-
tions, and more. For simplicity, in this paper we will
only describe real space renormalization as it pertains to
the Ising model. It is our hope that it is an example rich
enough to demonstrate real space renormalization and
illustrate its profound importance.

B. The Ising Model

The Ising model is a historically important problem in
statistical physics as well as computer science and ma-
chine learning [4, 5]. Originally devised as a thermo-
dynamic model of ferromagnetism, it has since been ap-
plied to a wide range of problems, including some beyond
physics.

The Ising model takes the form of up-down spins ar-
ranged on a regular lattice. Each spin is correlated to its

FIG. 1. A random Ising model on a square lattice.
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neighboring spins—namely, those adjacent to it on the
lattice.

We can model this with a Hamiltonian representing
the total energy of the system:

H(J, σ⃗) = −J
∑

(i,j)∈E

σiσj (1)

Here, σ⃗ is a vectorized list of all the spins in the Ising
model. (i, j) ∈ E means the spins i and j are neighbors on
the lattice. J ∈ R, called the coupling constant, specifies
the correlation strength between spins. σi, σj ∈ {−1,+1}
are the values of spins i and j.

If J > 0, the system is ferromagnetic, and aligned spins
lower the energy while misalign spins raise it. If J < 0,
the system is antiferromagnetic and the reverse is true:
aligned spins raise the energy and misaligned spins lower
it. If J = 0, the system is non-interacting and the spins
have no correlation.

Using this Hamiltonian, we can define a Gibbs proba-
bility distribution over all the states of an Ising model:

P (J, σ⃗) =
1

Z
e−H(J,σ⃗) (2)

Implicitly, this assigns higher probabilities to lower en-
ergy states.

C. Real Space Renormalization of the Ising Model

Say we have some Ising model defined by a specific lat-
tice and a coupling constant J . We would like to “zoom
out” and understand what this Ising model looks like
from some larger length scale.

To apply real space renormalization, we must first en-
gineer a coarse-graining transformation to remove some
degrees of freedom from the system. This is necessary to
obtain a large-scale description of the system that models
macroscopic, rather than microscopic, features.

For example, given a square lattice, we might choose
Kadanoff blocking [6] as our coarse-graining transfor-
mation. Kadanoff blocking removes degrees of freedom

FIG. 2. A Kadanoff blocking procedure.

by replacing a block of microscopic spins with a single
macroscopic spin.

Note that this transformation has the required prop-
erty of scale invariance. In other words, the coarse-
grained system on the new set of spins σ⃗′ is still an Ising

model. This means it can be modeled with the same
Hamiltonian. Only the coupling constant J will change
to some J ′ to reflect the change in scale.

H(J ′, σ⃗′) = −J ′
∑

(i,j)∈E′

σiσj (3)

This constitutes one real space renormalization step.
Note that for each J there is only one unique J ′. This

means we can write down a function modelling the change
in coupling constant due to the coarse-graining transfor-
mation:

J ′ − J = f(J) : R 7→ R (4)

We call this function the renormalization group (RG)
flow. It turns out that the asymptotic behaviors of this
function correspond directly to the thermodynamic phase
behaviors of the system. Formulating this function across
all values of J , is extremely difficult, however. We will
now describe an algorithm that learns it automatically.

II. THE MLRG ALGORITHM

A. Algorithm Description

The Ising model we use in this algorithm will be defined
on the Lieb lattice. It is similar to the square lattice, but
incorporates ”hidden” spins which we can ignore when
considering the visible behavior of the system. A single
coupling constant, J , still mediates correlations between
neighbors.

FIG. 3. (a) The fine-grain Lieb lattice. Visible spins are green
and hidden spins are blue. (b) The coarse-grain Lieb lattice.
The new hidden spins are red.

To coarse-grain, we use the Lieb blocking transforma-
tion visualized in Figure 3. Real space renormalization is
applicable, as the system exhibits scale-invariance—the
coarse-grained lattice is a Lieb lattice rotated by 45 de-
grees, with hidden and visible spins swapped.
Let’s note two niceties of the Lieb lattice important to

the algorithm.

1. Since the Lieb lattice is translationally invariant,
we don’t need to work with an entire lattice, only
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the composite block that repeats to form it (Fig-
ure 4). Mathematically, this means we only need
the Gibbs distributions over the block, not over the
entire lattice, which would be completely unman-
ageable.

FIG. 4. (c) The fine-grained Lieb block is a square graph. (d)
The coarse-grained Lieb block is a cross graph.

2. Since behavior of the hidden spins doesn’t matter,
we only need to consider the behavior of the visible
spins. This will allow us to interpret the Lieb lattice
as a Restricted Boltzmann Machine (RBM) [7].

So how are we going to formulate f(J)? The MLRG
algorithm proposes approximating [8, 9] it using a neural
network:

fθ(J) : R 7→ R (5)

Here, θ denotes the parameters of our network which will
be tuned during training.

To train fθ(J), Hou et al. [1] propose the following
learning procedure:

1. Sample a value of J

We want our learned function fθ(J) to be highly
accurate around its zeroes, because their locations
specify important thermodynamic fixed and crit-
ical points. Elsewhere, it is fine if fθ(J) is only
reasonably accurate.

To this end, we choose to use Hamiltonian Monte
Carlo (HMC) [10, 11]. Using Hamiltonian dynam-
ics, HMC samples from the unnormalized probabil-
ity distribution:

P̃ (J) = e−U(J) (6)

Here, U(J) is a potential energy function which is
minimized by the samples. We set it to:

U(J) = β||fθ(J)||2 (7)

U(J) is annealed in during training by increasing
β from β0 = 0 to a βT > 0 according to some
schedule. This ensures the sampling is more or
less random at the beginning of training, and we

can get a general idea of the function shape. Later
on, as the full value of U(J) kicks in, the sampler
begins to sample heavily only around the points of
interest, thus refining their values.

2. Forward pass to get J ′ = J + fθ(J)

Remember, the fθ(J) represents the change in
the coupling constant J after the coarse-graining
transformation. Thus we can compute J ′, which
we will use in the next step.

3. Evaluate the error between fine and coarse-
grained models

J is the coupling constant for the fine-grained
model (Figure 4c). J ′, calculated in step 2, is
the coupling constant for the coarse-grained model
(Figure 4d). Ideally, if fθ(J) does a good job, these
two models should behave as similarly as possible.

Now, the distributions over the visible spins provide
our understanding of the model behaviors. These
are given by marginalizing hidden spins out of the
original Gibbs distribution:

Pfine(J, v⃗) =
∑
h⃗

P (J, v⃗, h⃗) (8)

Pcoarse(J
′, v⃗) =

∑
h⃗′

P (J ′, v⃗, h⃗′) (9)

We can then use a Kullback-Liebler (KL) diver-
gence to measure the difference between these dis-
tributions:

DKL =
∑
v⃗

Pfine(v⃗) log
( Pfine(v⃗)

Pcoarse(v⃗)

)
(10)

Alternatively, we can use the common contrastive
approximation [12] to the KL divergence:

DC = Fcoarse(v⃗fine)− Fcoarse(v⃗coarse) (11)

Here, Fcoarse is the free energy function of the
coarse-grained model. v⃗fine and v⃗coarse are con-
figurations of visible spins Gibbs-sampled from the
fine and coarse-grained models, respectively.

Either of these divergences is an explicit expres-
sion measuring the difference between the fine and
coarse-grained distributions, and, by proxy, how
well fθ(J) predicts J

′.

4. Backpropagate error to θ

Once we compute either DKL or DC , we use it as
a loss function and backpropagate [13] it to adjust
the parameters θ. This is fairly easy using auto-
differentiation [14], since both DKL and DC are
computed using the forward pass value fθ(J). As
training progresses, fθ(J) will get better and better
at predicting J ′ given J .
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B. Demonstration of Results

Following this procedure, we trained a simple two-layer
multi-layer perceptron (MLP) with ReLU activations as
fθ(J):

FIG. 5. Learned fθ(J) function in red. The equivalent 1-
dimensional vector field is shown on the x-axis.

At a glance, this fθ(J) exhibits the general features we
would expect:

• Anti-symmetric about J = 0

• Fixed points at J = 0,−∞,+∞

• Finite critical points where flow direction switches.

But how precise is it? From analytically solutions to
the Ising model, we know the critical point should be
located at:

JC =
1

2
arccosh(1 +

√
2) ≈ 0.7643 (12)

Using Newton’s root-finding method, we can numer-
ically solve for the critical point predicted by fθ(J).
We can estimate the distribution of these predictions by
training multiple instances of fθ(J). A boxplot of this
distribution is shown in Figure 6. We observe that, in-

FIG. 6. Boxplot of predictions for JC . Analytical target value
shown by dotted red line.

deed, the algorithm is successful at identifying critical
points near the correct value. In III we will discuss how
to improve these results.

III. THE MLRG DESIGN SPACE

A. Bias Reduction Using Higher-Dimensional
Representations

The distribution of predictions in Figure 6 are visibly
biased from the real JC . Why? In Section III E and
IIID, we show some ways to slightly reduce this bias
by adjusting algorithm hyperparameters. However, Hou
et al. [1] conjecture that most of the bias comes from
excessive information loss of relevant microscopic effects,
which occurs during the coarse-graining transformation.

To ameliorate this, they propose increasing the repre-
sentational capacity of the Ising model, reasoning that
the more complex the Ising model is, the more infor-
mation it can retain past coarse-graining. This can be
done by using higher-dimensional lattices—in short, dec-
orating the base Ising model with more spins and wiring
additional correlations between those spins (See Figure
7) Now, these higher-dimensional lattices must have the

(a) (b)

FIG. 7. (a) A bond in a base 1-dimension Ising model (A1

representation) (b) A bond in a 5-dimension Ising model (A1⊕
E representation)

same symmetries as the original, base Ising model. We
can ensure this by referencing the representations of the
lattice symmetry group. See Hou et al. [1] for an in-depth
discussion of this process.

The same general learning algorithm can be applied
to these higher-dimensional lattices. However, since we
added additional correlations between spins, we will have
more coupling constants that need to change during the
coarse-graining transformation. If we have n coupling
constants, we can express the coupling constants by a

vector J⃗ ∈ Rn. The RG flow, which we want to model,
is also higher-dimension now:

J⃗ ′ − J⃗ = f⃗(J) : Rn 7→ Rn (13)

We can verify Hou et al.’s conjecture, observing in Fig-
ure 8 that increasing the lattice dimensionality does in
fact reduce the prediction bias.

Hou et al. [1] further show that as the number of di-
mensions increases, that is as n → ∞, the bias seems to
go to 0. Unfortunately, due in part to the curse of dimen-
sionality, this comes at the significant cost of degraded
training stability and increased compute time. Neverthe-
less, this is reassuring, as it provides a loose scaling law
for the algorithm’s predictive accuracy.
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FIG. 8. Boxplot of predictions for JC using an A1 represen-
tation (1 dimension) versus an A1 ⊕ E representation (5 di-
mensions). Analytical target value shown by dotted red line.

B. Learning the Flow versus the Monotone

In all our results so far, we have learned the RG flow

function f⃗(J⃗) = J⃗ ′ − J⃗ . In their paper, however, Hou et
al. learn instead the RG monotone function:

C(J⃗) : Rn 7→ R (14)

According to the C-theorem [15], the monotone C(J⃗)
has the important property of always decreasing mono-
tonically under the Ising model RG flow, and is guaran-

teed to exist. Learning C(J⃗) is attractive because of this
theoretical soundness.

On the other hand, learning f⃗(J⃗) is theoretically shaky.
It is related to the monotone by:

f⃗(J⃗) = ∇⃗C(J⃗) (15)

However, the f⃗θ(J⃗) we learn might not be, and usually
is not, the gradient of any function.

Qualitative observations seem to suggest, however,

that learning f⃗(J⃗) is good enough for our purposes, and
we see no significant degradation in predictive abilities
and accuracy.

Moreover, learning f⃗(J⃗) is significantly faster, not to
mention easier to implement. This is because learning

C(J⃗) requires computing ∇⃗C(J⃗) in the forward pass for

J⃗ ′ = J⃗+∇⃗C(J⃗), as well as ∇⃗||∇⃗C(J⃗)||2 during Hamilto-
nian Monte Carlo sampling. These first and second-order
derivatives are very expensive for auto-differentiation to

compute and backpropagate. Learning f⃗(J⃗), on the
other hand, only requires computing at worst the first-

order quantity ∇||f⃗(J⃗)||2. The compute time difference
is shown in Figure 9.

As a side note, learning the flow f⃗(J⃗) also permits the
use of non-smooth non-linearities like ReLU in the neural
network, which wouldn’t be compatible with Newton’s
method if learning the monotone.

More work is needed to investigate any possible conse-
quences of learning the flow instead of the monotone.

FIG. 9. Compute time per training epoch for learning the

monotone C(J⃗) versus learning the flow f⃗(J⃗).

C. KL vs Contrastive Divergence

So far, we have used the contrastive divergence as our
loss function, instead of the KL divergence, mostly to
adhere to convention—the KL divergence is typically in-
tractable to compute. However, in the case of the A1

representation (1-dimensional) Lieb Ising model, the KL
divergence is actually tractable to evaluate—there are
only a few hundred spin configurations to sum over.
In the machine learning literature, there has been skep-

tism about the validity of the contrastive approxima-
tion [16–18], including assertions that it can introduce
bias. We wish to elucidate whether or not this affects
our learned model.

FIG. 10. Distributions of critical point predictions using the
contrastive versus KL divergences as our loss function.

We observe in Figure 10 that, in fact, using the KL
divergence only really affects the variance of our predic-
tions, not the bias. Since there are other ways to reduce
variance, such as decreasing learning rate, and variance is
not a particularly pressing issue, we conclude that the ex-
tra compute cost needed to use the KL divergence is not
worth it. Furthermore, the KL divergence does become
intractable when using higher-dimension representations.

D. Divergence Hyperparameters

If we decide to use the contrastive divergence as our
loss function, we want to be sure to compute it correctly
and efficiently. There a few hyperparameters to control
for:
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• The number of samples to take from the models:
the batch size, more or less

• The number of Gibbs sampling steps for the fine-
grained model

• The number of Gibbs sampling steps for the coarse-
grained model

The effect on A1 critical point predictions from varying
each of these hyperparameters, while holding all others
constant, is shown in Figure 11.

FIG. 11. Hyperparameter space explorations for three con-
trastive divergence hyperparameters.

We conclude that:

• The batch size should be fairly large to control vari-
ance, though there are diminishing returns past a
few hundred samples.

• The number of fine-grained model Gibbs steps
should be larger than a minimum threshold to con-
trol bias

• The number of coarse-grained model Gibbs steps
can be minimal—1 is plenty

E. Sampler Hyperparameters

There are a number of hyperparameters to set for the
HMC sampler. Here, we do a limited hyperparameter
space exploration for the following:

• The number of trajectories: basically the sample
batch size

• Number of solve steps: controls for how long the
numerical integrator solves the Hamiltonian equa-
tions.

• Number of sampling steps: controls how many re-
peated, refining Monte Carlo iterations are per-
formed.

The effect on A1 critical point predictions from varying
each hyperparameter, while holding all others constant,
is shown in Figure 12.

FIG. 12. Hyperparameter space explorations for three HMC
divergence hyperparameters.

We conclude that:

• The number of trajectories should be set above the
minimal threshold to reduce heavy biasing error as
well as variance.

• The number of solve steps can be small.

• The number of sampling steps can be small.

IV. CONCLUSION

In this work, we introduced the concept of real-space
renormalization, presented the Ising model problem, and
demonstrated how to apply real-space renormalization to
it. We then described a neural learning algorithm to ap-
proximate the renormalization group flow function over
a Lieb lattice Ising model. We demonstrated its success
at learning an accurate approximation, and observed its
predictive abilities for critical points. We then discussed
some aspects of the algorithmic design space, notably the
reduction of bias via higher-dimensional representations,
as well as the choice of loss function, whether to learn
the flow or the monotone, and the role of sampler and
contrastive divergence hyperparameters.
All in all, the MLRG algorithm represents both a new

way to automatically determine renormalization group
flows, as well as an exciting new paradigm of machine
learning. In the future, it will be interesting to see fur-
ther research clarifying aspects such as flow versus mono-
tone learning, the effect of contrastive approximations on
the true gradient, and the significance of increasing the
representational dimension. There is also much follow-
up work to do regarding applying this algorithm to other
systems, such as different Ising models and maybe even
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non-Ising models as well as improving the algorithm to
stably and efficiently handle higher-dimension represen-

tations.
For reference, our implementations can be found at the

repository https://github.com/jshe2304/dlrg.
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