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Abstract

The Ising model is a historically important problem in statistical mechanics [1].
Although it was originally proposed as a crude approximation of magnetic phe-
nomena, it furnished statistical mechanics, and later probabilistic science as whole,
with a new paradigm of graph-based modeling that would prove influential. Espe-
cially in the distilled, theoretical study of probabilistic graphical models (PGMs),
which today is its own field, many methods developed for Ising models and spin-
glasses—as well as the rich physical vocabulary of energies, entropy, and partition
functions—have been repurposed and reinterpreted for application towards diverse
problems [2].
In this paper, we pay homage to the Ising model by applying modern computational
solutions to the original problem of magnetism. We discuss the theory of the Ising
model from a physical perspective, and examine its correspondence with PGMs
theory. We then evaluate two approaches to inference—Markov Chain Monte Carlo
and belief propagation—and discuss their strengths and weaknesses when appplied
to predict physical phenomena.

1 Theory of the Ising Model

The prevailing physical theory explains magnetism as a consequence of the intrinsic spin all particles
possess [3]. This spin produces a magnetic dipole moment µ⃗ proportional to the spin σ:

µ⃗ = µσ

If an external magnetic field B⃗ is present, the potential energy is given by the classical formula:

UB = −µ⃗ · B⃗

There also exist pairwise exchange interactions between particles due to the mutual effects of their
magnetic moments. These exchange effects have strengths defined by constants Jij . The potential
energy contained by these pairwise interactions is:

Uij = −Jijµ⃗i · µ⃗j

For simplicity, we will ignore other, more complicated phenomena.

Now, consider a collection of particles µ⃗ = (µ⃗1, . . . , µ⃗n) in the prescence of an external magnetic
field B⃗. Note that both potential energies are minimized when the moments align with B⃗ and with
each other. This corresponds to the explanation of ferromagnetism as a systematic alignment of spins.
The Hamiltonian, which specifies the total energy of the system, is defined by the sum of all these
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pairwise and unary energies:

E(µ⃗) = −1

2

n∑
i

n∑
j

Jijµ⃗i · µ⃗j −
n∑
i

µ⃗i · B⃗ (1)

In most cases, working with this Hamiltonian is intractable. Luckily, we can simplify it tremendously
by making several assumptions.

First, in the context of an atomic lattice, all sites are assumed to be identical and representable by a
single fermionic spin variable. That is, each site’s magnetic moment simplifies as µ⃗i = µσi, where
the spin σi ∈ {−1, 1}.

Second, we make a mean-field nearest-neighbor approximation. That is, we assume strength of
pairwise interactions is negligible for non-adjacent pairs of atoms. We also assume the non-negligible
Jij’s are all equal to some constant J , that is, the material is organized in some regular, symmetric
lattice.

Coalescing constants, the Hamiltonian reduces nicely to:

E(σ⃗) = −J

n∑
i

∑
j∈adj(i)

σiσj −
n∑
i

σiBi (2)

The Boltzmann distribution then gives the probability of some microstate of spins σ⃗ = (σ1, . . . , σk)
at inverse temperature β:

P (σ⃗) =
1

Z
e−βE(σ⃗) (3)

The physical theory of the Ising model has now been developed and we can turn to the task of
inference on a PGM.

2 Inference on Ising Models

In many cases, the Ising model of ferromagnetism is used to produce physical measurables like
energy and magnetization. For example, Ernst Ising’s original inquiry asked if the Ising model was
capable of demonstrating phase transitions.

Now, these measurables require marginal distributions in order to compute. For example, the
quantities we are most interested in, the energy 2 and the magnetization E[σ], both require explicit
microstates to compute. We will now examine two approaches to estimating these marginals—Markov
Chain Monte Carlo and belief propagation.

2.1 Markov Chain Monte Carlo

Monte Carlo algorithms produce better and better estimates by repeated sampling. When the true
distribution is not immediately available for sampling, constructing an appropriate Markov Chain is
one way to approximate it.

In the context of the Ising model, the Markov transitions available from some microstate of spins σ⃗
are those created by flipping any spin σi in σ⃗. We can sample from these available transitions, then,
by choosing a random σi to flip. Since we want to move towards the true, equilibrium distribution,
we only transition to the new sampled microstate σ⃗′ if P (σ⃗′) > P (σ⃗). Using the formula for the
Boltzmann distribution, this criterion is equivalent to E(σ⃗′) < E(σ⃗).

In practice, we will compute the change in energy ∆E = E(σ⃗′)− E(σ⃗), which has a nice form:

∆E = E(σ⃗′)− E(σ⃗) = 2σi(J
∑

j∈adj(i)

σj +Bi)

If ∆E < 0, we transition states. If ∆E ≥ 0, we will transition microstates with probability defined
by the Boltzmann factor:

P (σ⃗′)

P (σ⃗)
= e−β∆E
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Physically, this nicely models the phenomena of spin flips caused by field fluctuations.

We implemented this process in Python on square lattices of spins. For our sampling process, we
iterated through all spins in random order, at each step evaluating the transition defined by flipping
that spin. We believe this is a good trade off between performance and an accurate simulation of the
physical equilibration.

(a) Spin lattice sample microstates from various points in the sampling process

(b) Measurables of samples during the sampling process

Figure 1: MCMC quenching of an initial randomly generated 256×256 spin lattice sample with J =
0.5, β = 10, and a centered Gaussian magnetic field Bij = 0.01 exp[− 1

1024 ((i−128)2+(j−128)2)].

In the MCMC quenching simulation conducted in 1, we observe several expected phenomena. The
pairwise interactions are exhibited by the clusters of aligned spins which form and coalesce as the
number of steps grows. The prescence of the magnetic field also seems to magnetize the entire lattice,
as indicated both by the convergence on full spin alignment in 1a, and the increasing magnetization
measured in 1b.

Using this MCMC inference scheme, we ran an experiment (Figure 2) simulating the phase transitions
expected of the 2D Ising model [4].

As seen, the energy and magnetization of the lattice both degenerate to zero as the temperature
increases. The physical interpretation of this is that, at high temperatures, the field fluctuations which
cause spin flips become more and more likely, and thus the alignment of spins is constantly being
disrupted. It has been shown analytically that the Ising model in 2D exhibits this phenomenon of
phase transitions. This simulation reinforces that claim. We can also identify what is called the Curie
temperature, the point at which the phase transition occurs.
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Figure 2: 100× 100 spin lattice run with J = 0.5, B⃗ = 0 and T ∈ {0.01, 0.02, . . . , 2}. Note that
β = 1

T . An hand-estimated Curie temperature is marked in red.

2.2 Belief Propagation

Message-passing belief propagation algorithms are another way to estimate true marginals for general
graphical models. They are derived from the theory of variable elimination, but are applicable to
general graphs which may include cycles.

Belief propagation is especially simple to implement on Ising models. This follows from the
Boltzmann distribution that defines the joint distribution:

P̃ (σ⃗) = exp
[
βJ

∑
i

∑
j∈adj(i)

σiσj + β
∑
i

σiBi

]
(4)

It factorizes nicely over the graph representing the Ising lattice:

P̃ (σ⃗) =
∏
i

exp
[
βσiBi

] ∏
j∈adj(i)

exp
[
βJσiσj

]
(5)

This defines a factor graph of node and edge potentials representing the unary and pairwise potentials,
respectively:

ϕi = exp
[
βσiBi

]
ϕij = exp

[
βJσiσj

]
We ran a belief propagation routine on the factor graph according to the update scheme in Algorithm
1.

We tested this on the same system from 1. Algorithm 1 is run repeatedly until the maximum change in
the messages falls below some ϵ. We also take pseudo-measurements by sampling from the marginal
beliefs at each step and computing their mean energy and magnetization.

After calibration, the approximate marginals visualized in Figure 3a reflect what we would expect,
full system spin alignment by the magnetic field. The trend in the magnetization is also observable in
the plots of sample pseudo-measurables, which reflect the appropriate minimization of energy.

2.3 Comparing MCMC and belief propagation

When deciding which paradigm of inference to use for the Ising model, there are a number of
considerations with respect to speed, output, interpretability, etc. Here, we will discuss these factors
with respect to MCMC and belief propagation.

MCMC is useful because it provides easy access to valid microstate samples throughout the estimation
process. Importantly, this makes the computation of meaningful measurables easy and intuitive. This
is a direct consequence of the simulatory nature of MCMC, which emulates, as closely as possible,
the underlying physical processes.
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Algorithm 1 Belief propagation calibration step on factor graph

Input
Factor graph: G(V = {vi}i ∪ {vij}i,j , E)
Unary Factors: {ϕi(σi)}i
Pairwise Factors: {ϕij(σi, σj)}i,j

Output:
Unary beliefs: {βi(σi)}i
Pairwise beliefs: {βij(σi, σj)}i,j

// Pass messages from unary nodes
1: for unary vi ∈ V do
2: for pairwise vij ∈ Nb(vi) do
3: δ[vi → vij ] = ϕi

∏
k ̸=j δ[vik → vi] // Nothing to sum!

4: end for
5: end for

// Pass messages from pairwise nodes
6: for pairwise vij ∈ V do
7: for {vi, vj} = Nb(vij) do
8: δ[vij → vi] =

∑
vj
ϕijδ[vj → vij ]

9: δ[vij → vj ] =
∑

vi
ϕijδ[vi → vij ]

10: end for
11: end for

// Compute beliefs
12: for unary vi ∈ V do
13: βi = ϕi

∏
j δ[vij → vi]

14: end for
15: for pairwise vij ∈ V do
16: βij = ϕijδ[vi → vij ]δ[vj → vij ]
17: end for
18: return {βi}i, {βij}ij

Unfortunately, MCMC is slow, and very difficult to parallelize. This slowness is compounded by its
tendency to follow unoptimal branches in the search tree and get stuck in local minima.

Belief propagation, on the other hand, is useful because of the immediate access to highly-accurate
marginal beliefs, upon calibration. Belief propagation is also fast. It is highly parallelizable, especially
on factor graphs, and inherently bypasses many of the search tree inefficiencies that Monte Carlo
methods struggle with.

The downsides of belief propagation lie in the poor interpretability of intermediate steps. Since the
marginal beliefs do not necessarily agree with each other until they are fully calibrated, they do not
correspond to physically meaningful microstates when sampled. As a consequence, it is difficult to
take measurements of the system. Deriving macrostate properties from the partition function may be
one solution, but we leave that problem to future studies.

For most physical use cases, we conclude that MCMC is the better approach to inference. The
interpretability and ease of measurement is extremely valuable, and lends itself to the precise
simulation and analysis of physical phenomena such as phase transition.

3 Conclusions

In this paper, we revisited the Ising model, an important probabilistic model of ferromagnetism, to
pay homage and exercise modern computational methods. We discuss the physical theory and used it
to motivate the PGMs methods applied. We evaluated two approaches, Markov Chain Monte Carlo
and belief propagation, for marginal inference on the Ising model, and discussed their respective
strengths and weaknesses.

We concluded MCMC was the better approach in the context of the Ising model because of its
strong interpretability and ease of measurement. These strengths enables us to demonstrate the
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(a) Spin lattice marginal beliefs at various points in the calibration process.

(b) Mean value of measurables taken from samples from marginals

Figure 3: Belief propagation to estimate marginal distributions of spin lattice with J = 0.5, β = 10,
and a centered Gaussian magnetic field Bij = 0.01 exp[− 1

1024 ((i− 128)2 + (j − 128)2)]. We run
belief propagation until the difference between messages falls below ϵ = 0.001.

phenomenon of magnetic phase transitions in a highly emulative way. However, for faster inference
that is interested in the true equilibrium beliefs of the system, belief propagation may prove more
effective.

For the future, there is much to explore both with respect to the problem of magnetism as well as the
Ising model. For example, deriving beliefs about macrostate measurables, which might involve the
partition function, is an interesting and challenging task that might lessen the reliance on MCMC.
There is also the problem of better simulation and analysis of phase transition phenomena, which
might necessitate the adaptation of renormalization group theory to machine learning.

We conclude by affirming the power and usefulness of the Ising model in the context of physical
as well as abstract probabilistic modeling. Within its rich theory, we can intuit much about modern
probabilistic reasoning and its connection with the study of physical ensembles. Additionally, in
the rich history of the model, in the story leading from ferromagnetism to deep neural networks,
we can find solace in the fact that today’s crude toy models might inspire tommorow’s transhuman
super-intelligence.

4 Supplementary Material

Our implementations of the above algorithms, using Python and the NumPy package, can be found at
https://github.com/jshe2304/ttic31180.
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